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ESTIMATION FOR COMPLETE DATA 

Introduction 

• Recap from chapter 4 – Data dependent distribution versus parametric distribution 

o Definition 13.1 – A data-dependent distribution is at least as complex as the data or knowledge 

that produced it, and the number of “parameters” increases as the number of data points or 

amount of knowledge increases. 

o Definition 13.2 – A parametric distribution is a set of distribution functions, each member of 

which is determined by specifying one or more values called parameters. The number of 

parameters is fixed and finite. 

o Link these definitions with parametric and non-parametric inference 
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• Usually we deal with parametric distributions. However two data-dependent distributions are 

considered: the empirical distribution and the kernel smoothed distribution. 

o Definition 13.3 – The empirical distribution is obtained by assigning probability 1/n to each data 

point in the sample. 

o Definition 13.4 – A kernel smoothed distribution is obtained by replacing each data point in the 

sample with a continuous random variable and then assigning probability 1/n to each random 

variable. The random variable used must be identical except for a location or scale change that 

is related to its associated data point (see chapter 14). 

o Observation: The empirical distribution is a special case of kernel smoothed distribution in 

which the random variable assigns probability 1 to the data point (and 0 elsewhere).  

• Data sets: When observations are collected the “ideal” situation is to have the exact value for each 

observation (“complete individual data” as in data set B and data set D1). However, complete 

individual data are not always available: one reason is grouping (data set C or data set A for drivers 

with 5 of more claims); another reason is censoring and/or truncation. 
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• 4 data sets are repeatedly used: 

1. Data set A – Number of accidents by one driver in one year (data presented in Dropkin, 1959). Data 

summarized in Table 13.1. 

2. Data set B – Amounts paid on workers compensation medical benefits. A random sample (artificial 

data) of 20 payments (full amount of the loss) is given in Table 13.2 

3. Data set C – Random sample of payments from 227 claims from a general liability insurance. Data 

classified by payment range and presented in Table 13.3.  

4. Data set D – Time at which a five-year term insurance policy terminates (artificial data). For some 

policyholders termination is by death, for some others it is by surrender (cancellation of the 

insurance contract) and for the remainder it is at the expiration of the five-years period.  Two 

versions of this data set are presented. The first one (Table 13.4) with full information (time of 

death and time of surrender when applicable) and in the second one (Table 13.5) only the first 

event is recorded. 

 

Data sets A and B will be presented in Example 13.1 
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Data Set C 

Payment range Number 

Linf Lsup payment 

0 7500 99 

7500 17500 42 

17500 32500 29 

32500 67500 28 

67500 125000 17 

125000 300000 9 

300000 Infinity 3 

 

 

   

   

Total number  

of observations                     227 

Data set D1 

Policyholder Time of death Time of surrender 

1 

 

0.1 

2 4.8 0.5 

3 

 

0.8 

4 0.8 3.9 

5 3.1 1.8 

6 

 

1.8 

7 

 

2.1 

8 

 

2.5 

9 

 

2.8 

10 2.9 4.6 

11 2.9 4.6 

12 

 

3.9 

13 4.0 

 14 

 

4.0 

15 

 

4.1 

16 4.8 

 17 

 

4.8 

18 

 

4.8 

19 -30 

  
 

Data set D2 

Policyholder First observed Last Observed Event 

1 0 0.1 s 

2 0 0.5 s 

3 0 0.8 s 

4 0 0.8 d 

5 0 1.8 s 

6 0 1.8 s 

…    

15 0 4.1 s 

16 0 4.8 d 

17 0 4.8 s 

18 0 4.8 s 

19 -30 0 5.0 e 

31 0.3 5.0 e 

32 0.7 5.0 e 

33 1 4.1 d 

34 1.8 3.1 d 

35 2.1 3.9 s 

36 2.9 5.0 e 

37 2.9 4.8 s 

38 3.2 4.0 d 

39 3.4 5.0 e 

40 3.9 5.0 e 
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• Censoring (chapter 14) – For some observations, we only know if the observed value is below or above a 

known value. Let y  be the “correct” value, c the censoring point and x  the available data. 

o Censoring from above – observations above a given value are known to be above that value but 

the exact value is unknown. The values below the censoring point are correctly recorded. Then 





≥

<
=

cyc

cyy
x . 

o Censoring from below – similar definition. We get 




>

≤
=

cyy

cyc
x . 

o In insurance censoring from above is quite usual. If a policy pays no more than 10000 euro for a 

claim and if the insurance company only records the payments made, any time a loss is above 

10000 euro the amount of the claim will be unknown but we will know that a payment of 10000 

euro has happened. 

o The censoring points could be known or random. Random censoring occurs for instance when a 

policyholder decides to surrender his policy (data set D1). In any case we will know the 

censoring points that can differ from observation to observation. 
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• Truncation (chapter 14) – We can only observe values within a given interval  

o From below – observations below a given value are not recorded 

o From above – observations above a given value are not recorded  

o In insurance, truncation form below can happen namely when there is a deductible: A 

policyholder will not report a claim whose value is below the deductible.  

Remember that there are 2 kinds of deductibles: Ordinary deductible (claim amounts above the 

deductible are paid in excess of the deductible) and Franchise deductible (claim amounts above 

the deductible are fully reimbursed) – see chapter 8 (definitions 8.1 and 8.2) 

 

• From a statistical point of view, truncation is a more severe limitation than censoring. 
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The empirical distribution for complete individual data 

• Let us consider a sample of size n, ( )nxxx ,,, 21 �  and let us also define the indicator function of a set A 

by 




∈

∉
=∈=

Ax

Ax
AxIxI A

1

0
)()(   

• Definition 13.5 – The empirical distribution function (also known as empirical cumulative distribution 

function or ecdf) is   

n

xxI

n

x
xF

n

i i

n

∑ =
≤

=
≤

= 1
)(obs ofnumber 

)(  

• Whatever the type (discrete, continuous, mixed) of the random variable in the “theoretical” model, 

the empirical distribution function behaves as a distribution function of a discrete random variable.  

• Klugman et al (Loss Models) introduce the concept of empirical probability function as  

n

xxI

n

x
xf

n

i i

n

∑ =
=

=
=

= 1
)(obs ofnumber 

)( . 
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• If we are sampling from a continuous random variable, the probability that we observe a tie is 0 

(some exceptions can arise due to the rounding of the observed values) and consequently  in most 

situations nxfn /1)( = ; 

• The empirical distribution function is a much more important concept in statistical inference than the 

empirical probability function.  

• Example 13.1 – Provide the empirical probability functions for the data in data set A and B. For data 

set A also provide the empirical distribution function. For data set A assume that all seven drivers who 

had five or more accidents had exactly five accidents. 
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Data Set A 

 

Number of 

Accidents 

Number of 

drivers 

0 81714 

1 11306 

2 1618 

3 250 

4 40 

5 or more 7 

 
 

 

Total number  

of observations                       94935 
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Data Set B 

 

27 82 115 126 155 

161 243 294 340 384 

457 680 855 877 974 

1193 1340 1884 2558 15743 
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Data set B and R - Empirical distribution function 

> # read data – Data set B 

> x=c(27,82,115,126,155,161,243,294,340,384,457,680,855,877,974, 

1193,1340,1884,2558,15743) 

> F20=ecdf(x) 

> summary(F20) 

Empirical CDF:    20 unique values with summary 

   Min. 1st Qu.  Median    Mean 3rd Qu.    Max.  

   27.0   159.5   420.5  1424.0  1029.0 15740.0  

> plot(F20) 

 

Data Set A and R - Empirical distribution function 

> # read data 

>x=c(rep(0,81714),rep(1,11306),rep(2,1618),rep(3,250),rep(4,40), 

rep(5,7)) 

> length(x) 

[1] 94935 

> F94935=ecdf(x) 

>  summary(F94935) # Be very careful with the results!!!! 

F94935 is treated as an array with 6 observations equally distributed 

Empirical CDF:    6 unique values with summary 
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   Min. 1st Qu.  Median    Mean 3rd Qu.    Max.  

   0.00    1.25    2.50    2.50    3.75    5.00  

>plot(F94935) 

 

> # Empirical probability function 

> z=rep(1,length(x)); zz=tapply(z,x,sum) 

> zz 

    0     1     2     3     4     5  

81714 11306  1618   250    40     7  

> values=as.numeric(names(zz)) 

> values 

[1] 0 1 2 3 4 5 

> EmpProb=as.numeric(zz)/sum(as.numeric(zz)) 

> EmpProb 

[1] 8.607363e-01 1.190920e-01 1.704324e-02 2.633381e-03 4.213409e-04 

[6] 7.373466e-05 

> F=cumsum(EmpProb) 

> F 

 [1] 0.8607363 0.9798283 0.9968715 0.9995049 0.9999263 1.0000000 
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Risk set and cumulative hazard rate 

• Consider a sample of size n, ( )nxxx ,,, 21 � , and let kyyy <<< �21  be the k unique values that appear 

in the sample ( nk ≤ ). Let js  be the number of times the observation jy  appears, kj ,,2,1 �= .  

Obviously ns
k

j j =∑ =1
. 

• Let us define the risk set as the observations that are greater than or equal to a given value (most of the 

time we will use “risk set” to refer the cardinal of the risk set) and let  ∑ =
=

k

ji ij sr  be the risk set for the 

value jy . 

• Notice that, for kj ,,3,2 �= , 

 11 −− −= jjj srr ;  ∑
−

=
=−

1

1

j

i ij srn ;  ∑
−

=
−=

1

1

j

i ij snr ,  i.e.  nr =1 ;  12 snr −= ;   … 
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• The empirical distribution can be written as 

1

1

1

1

0

( ) 1 2,3, ,

1

j

ij i
n j j

k

x y

sr
F x y x y j k

n n

y x

−

=
−

<



= − = ≤ < =


≤


∑
�  

Note that 
n

r
yFn

2
1 1)( −= , 

n

r
yFn

3
2 1)( −= , …, 1)( =kn yF . 

• Use example 13.1 to illustrate. 

• Definition 13.6 – The cumulative hazard rate function is defined as  )(ln)( xSxH −=  

• Recall that )()(1)( xXPxFxS >=−=  

• Note that, if )(xH  is differentiable, )()(/)()(/)()( xhxSxfxSxSxH ==′−=′  and then 

∫ ∞−
=

x

dyyhxH )()(  where )(/)()( xSxfxh =  is the hazard rate function. 

• From definition 13.6, we get 
( ) ( )

( ) 1 ( )
H x H x

F x e S x e
− −= − ⇔ =  
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• Definition 13.7 – The Nelson-Aalen estimate of the cumulative hazard rate function is  












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=
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i
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i

jj

j

i
i

i

1

1

1

1

1

,,3,2

0

)(ˆ
�  

• Comment: Although the Nelson-Aalen estimator can be used with complete individual data, it has 

been established in a different framework, i.e. to be used with censored (and truncated) data. We 

shall return to this problem latter. 

• Examples 13.2 and 13.3 – Consider a data set containing the numbers 1.0, 1.3, 1.5, 1.5, 2.1, 2.1, 2.1, 

2.8. Determine the quantities described in the previous paragraph and then obtain the empirical 

distribution function. Determine the Nelson-Aalen estimate of the cumulative hazard function.  

 

Solve the example using EXCEL and R 

Use the Nelson-Aalen estimate of the cumulative hazard function to estimate the distribution 

function 
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Nelson-Aalen estimate using R and following definition 13.7 □  

> # Examples 13.2 and 13.3 following definition 13.7 

> x=c(1.0, 1.3, 1.5, 1.5, 2.1, 2.1, 2.1, 2.8) # The sample 

> z=rep(1,length(x))               # To provide a count using tapply 

> zz=tapply(z,x,sum) 

> zz 

  1 1.3 1.5 2.1 2.8  

  1   1   2   3   1  

> y=as.numeric(names(zz))                    # y_j 

> s=as.numeric(zz)                           # s_j 

> r=rep(length(x),length(s)) 

> r=r-c(0,cumsum(s)[1:length(s)-1])          # r_j 

> y 

[1] 1.0 1.3 1.5 2.1 2.8 

> s 

[1] 1 1 2 3 1 

> r 

[1] 8 7 6 4 1 

> F=c(1-r/length(x),1) 

> F # Example 13.2 finished 

[1] 0.000 0.125 0.250 0.500 0.875 1.000 
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> H=c(0,cumsum(s/r)) # Nelson-Aalen estimate # Example 13.3 

> H 

[1] 0.0000000 0.1250000 0.2678571 0.6011905 1.3511905 2.3511905 

> F_NA=1-exp(-H) 

> F_NA                              # another estimate of F_n 

[1] 0.0000000 0.1175031 0.2349829 0.4518413 0.7410682 0.9047443 

 

 

• Empirical survival function 

o Using the empirical cumulative distribution function, ( )nF x , it is straightforward to get the empirical 

survival function ( ) 1 ( )n nS x F x= −  which can act as an estimate of the survival function.  

1

1

1

( ) 2,3, ,

0

j

n j j

k

x y

r
S x y x y j k

n

y x

−

<



= ≤ < =


≤

�   

o As we will see in the next chapter the case ( )nS x for kx y≥  deserves some comments. 

• We can also get an estimate of the survival function using the Nelson-Aalen estimate 
ˆ ( )ˆ( )

H x
S x e

−=  
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Empirical distribution for grouped data 

 

• For grouped data it is not possible to construct the empirical distribution function. The main idea is to 

approximate the empirical distribution by means of 2 points: 

o  Wherever it is possible (at the groups  boundaries) obtain the value of the empirical 

distribution; 

o Connect those points using a linear interpolation (other interpolation methods are possible) 

• Let the group boundaries be kccc <<< �10 , i.e. group j is limited by 1−jc  and jc (often 00 =c  and 

kc = ∞ ) and let us denote by jn  the number of observations in group j.  Obviously 
1

k

jj
n n

=
=∑ . 

• It is straightforward to see that ∑ =
=

j

i ijn nncF
1

)/1()( , kj ,,2,1 �=  and that 0)( 0 =cFn . 

• Treatment of the group boundaries: No rule is given. If the underlying variable is continuous, as it is 

generally the case, there is no real problem. For other situations, the best solution is to use group 

boundaries such that we can guarantee that the observed values are not equal to group boundaries. 

Technically, in order to guarantee that )(xFn  is a distribution function, the value 1−jc  should be 

excluded from group j and jc  included. 
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• Definition 13.8 – For grouped data the distribution function obtained by connecting the values of the 

empirical distribution function at the group boundaries with straight lines is called the ogive. The 

formula is  

)()()(
1
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n cF
cc

cx
cF

cc

xc
xF

−

−

−

− −

−
+

−

−
= ,   jj cxc <≤−1  

• Comments: 

o As this function is differentiable at all points except group boundaries, the (empirical) density 

function can be obtained. To specify the density function at the boundaries it is arbitrarily made 

right continuous. 

o We can re-write the empirical distribution function as  

x
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j n j j n j n j n j

n n

j j j j

j n j j n j n j n j

j j j j
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• Definition 13.9 – For grouped data the empirical density function can be obtained by differentiating the 

ogive. The resulting function is called a histogram. The formula is  

)(

)()(
)(

11

1

−−

−

−
=

−

−
=

jj

j

jj

jnjn

n
ccn

n

cc

cFcF
xf ,   jj cxc <≤−1  

 

• Histograms and computer programs – be careful when classes do not have equal length 

• Example 13.5 – Construct the ogive and histogram for data set C. 

 

Use EXCEL to define the empirical distribution function 

 

You can also use R taking advantage of the actuar library or you can write your own solution 
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Using library actuar 

> library(actuar) 

Attaching package: 'actuar' 

 

The following object(s) are masked from package:grDevices : cm  

 

Warning message: 

package 'actuar' was built under R version 2.13.2  

> # 1000000 chosen arbitrarily 

> x=c(0,7500,17500,32500,67500,125000,300000,1000000) # breaks 

> y=c(99,42,29,28,17,9,3)  # counts 

> a=ogive(x,y) 

> a 

Ogive for grouped data  

Call: ogive(x, y) 

    x =      0,   7500,  17500,  ...,  3e+05,  1e+06 

 F(x) =      0, 0.43612, 0.62115,  ..., 0.98678,      1 

> plot(a) 

> a(1000) 

[1] 0.05814978 

> a(7500) 

[1] 0.4361233 
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> lb=x[1:(length(x)-1)]; ub=c(lb[2:length(lb)],NA) 

> a=cumsum(y)/sum(y);  

> la=c(0,a[1:(length(a)-1)]); ua=a[1:length(a)] 

> const=(ub *la-lb*ua)/(ub-lb) 

> xcoef=(ua-la)/(ub-lb) 

> ogive_table=data.frame(lower_bound=lb,upper_bound=ub, 

constant=const,x_coef=xcoef) 

> ogive_table 

 lower_bound upper_bound  constant        xcoef 

1          0        7500 0.0000000 5.814978e-05 

2       7500       17500 0.2973568 1.850220e-05 

3      17500       32500 0.4720999 8.516887e-06 

4      32500       67500 0.6343612 3.524229e-06 

5      67500      125000 0.7843325 1.302432e-06 

6     125000      300000 0.9188169 2.265576e-07 

7     300000          NA        NA           NA 

> # empirical density in column 4 of ogive_table (x_coef) 

> # To build array z choose an arbitrarily value in each class 

> z=c(rep(5000,99),rep(10000,42),rep(20000,29),rep(50000,28), 

rep(70000,17),rep(150000,9),rep(400000,3)) 

> b=hist(z,breaks=x) 
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> hist(z,breaks=x,xlim=c(0,125000)) 
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The empirical survival function (from chapter 14) 

 

• Let us consider a random sample ),,,( 21 nXXX �  and let us define the estimator of the empirical 

survival function  

{ }*

1

1 1
( ) # ( )

n x
n i ii

N
S x X x I X x

n n n=
= > = > =∑ ,  0>x , 

where { } ∑ =
>=>=

n

i iix xXIxXN
1

)(# . It is straightforward to see that ))(;(~ xSnbN x . If we 

consider an observed sample the corresponding estimate is 

{ }
n

n
xxI

n
xx

n
xS xn

i iin =>=>= ∑ =1
)(

1
#

1
)( , 0>x . 

Following Loss Models, from now on we will use the same notation for the estimator, 
*
( )nS x ,  and 

the estimate, ( )nS x . Both will be denoted by ( )nS x . 
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• Problem 1 – How to estimate an unconditional probability like )Pr( bXa ≤< ? 

Noting that )()()Pr()Pr()Pr( bSaSbXaXbXa −=>−>=≤<  a possible estimator is given by 

( ]
^

,
Pr( ) ( ) ( )

a ba b
n n

NN N
a X b S a S b

n n

−
< ≤ = − = = .  

Defining ( ]baN ,  as the number of observations in the sample that fall in the interval ( ]ba, . 

As ( ] ))()(;(~, bSaSnbN ba − , it is straightforward to obtain the expected value and the variance of the 

estimator. Our estimate is  

( ]
^

,
Pr( ) ( ) ( )

a ba b
n n

nn n
a X b S a S b

n n

−
< ≤ = − = =  

 

• Problem 2 – How to estimate a conditional probability like xxy q−  

( ) ( )
( )

( ) )(

)()(

Pr

Pr
|Pr|Pr

xS

ySxS

xX

yXx
xXyXxXxxyXqxxy

−
=

>

≤<
=>≤=>+−≤=−  

The “natural” estimate is 
x

yx

n

nn
xxy

n

nn

xS

ySxS
q

−
=

−
=−

)(

)()(
ˆ , assuming that 0)( >xSn .  

The corresponding estimator is 
x

yx

xxy
N

NN
q

−
=− ˆ . 

Note that this estimator do not have neither expected value nor variance since 0)0Pr( >=xN . 



 

28 

 

The usual solution 

Assume that )()( xSxS n=  (or equivalently that xx nN = ), given that 0>xn  .  

 

Now the estimator is 
x

yx

xxy
n

Nn
q

−
=− ˆ  but the distribution of yN  (and then the distribution of )(ySn ) 

is conditioned by )()( xSxS n= .  

The estimator is still unbiased and   
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And the estimate of the variance is 

( ) ( )yxy

x

nxxy nnn
n

xSxSq −==− 3

1
)()(|ˆrâv  
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How does it work? 

  

Using the condition )()( xSxS n=  is equivalent to consider a sub-sample with all the observations 

greater than x  and to estimate the probability of the variable being greater than y .  

The sub-sample has xn  observations and we get the conditional estimator, 
x

y

x

yx

xxy
n

N

n

Nn
q −=

−
=− 1ˆ .  

Remember that, in this framework, ))(/)(,(~ xSySnbN xy . 

The variance of 
x

y

n

N
,  is estimated using the usual procedure applied to the sub-sample, i.e. 

( )
2 3

1
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y y

x
y x yy x x

x x x

n n
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n n nN n n

n n n

 
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As it is straightforward to see, ( )ˆ ˆ ˆˆvar var 1 var
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−

   
= − =   

   
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• Example 14.5 – Using the full information of data set D1, empirically estimate 2q  and estimate the 

variance of this estimator. 

 

2=x , 3=y , 30=n , 292 =n , 273 =n  

06897.0
29

2

29

2729
ˆ2 ≈=

−
=q  

( ) 002214.0
29

)2729(27
30/29)2(|ˆrâv

32 ≈
−×

==Sq  

 

• Example 14.6 – Using data set B, empirically estimate the probability that a payment will be at least 

1000 when there is a deductible of 250. 

Let  X  be the value of a payment. Since there is a deductible of 250 we want to estimate 

( )250|1250Pr >>= XXp . Since there is a deductible we only have 13 observations 

1250

250

(1250) 4
ˆ 0.3077

(250) 13

n

n

S n
p

S n
= = = ≈  

016386.0
13

94
)ˆr(âv

3
≈

×
=p  

Note that this variance is conditional to the existence of observations above the deductible.  
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Empirical estimation of probabilities 

Let us consider a discrete random variable and let us assume that we want to estimate )Pr()( jj xXxp == . 

Let jN  be the number of times the value jx  was observed in a sample of size n . As it is straightforward to 

see ))(;(~ jj xpnbN . 

The empirical estimator is nNxp jjn /)( = . Consequently 

( ) )()( jjn xpxpE = , the estimator is unbiased 

( )
( )
n

xpxp
xp

jj

jn

)(1)(
)(var

−×
= .  The estimator is consistent. 

The estimate of the variance is given by ( )
( )

3

)
)(râv

n

nnn
xp

jj

jn

−×
=  

Note that the usual approximation from the binomial to the normal distribution can be used to get a 

confidence interval for )( jxp . 

Note also that similar results can be obtained for a continuous random variable when considering the 

probability of a particular event. 
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• Example 14.10 – For Data Set A determine the empirical estimate of )2(p  and estimate the variance 

of the estimator. 

94935=n   017043.094935/1618)2( ≈=np   

( )
( ) 7

3
1076466.1

94935

)1618949351618
)2(râv

−×≈
−×

=np  

 

• Example 14.11 – Use (12.3) and (12.4) to construct approximate 95% confidence intervals for )2(p  

using Data Set A 

First approximation using (12.4):  
( )

)1;0(~
/)2(1)2(

)2()2(
n

npp

pp

nn

n
�

−×

−
 

Confidence interval: ( ) nppp nnn /)2(1)2(96.1)2( −××± , i.e. (0.01622; 0.01789) 

Second approximation using (12.3):  
( )

)1;0(~
/)2(1)2(

)2()2(
n

npp

ppn
�

−×

−
 

□ Confidence interval: 
( )2

222

96.12

)2(4)2(496.196.196.1)2(2

+

−+±+

n

pnpnpn nnn
, i.e. (0.01624; 0.01789) 
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Empirical survival distribution for grouped data 

 

Let Y  be the number of observations in the sample (size n) whose values are less than or equal to 1−jc  and 

let Z  be the number of observations whose value are less than or equal jc  but greater than 1−jc .  

• Then, for jj cxc <≤−1 , we have 
( ) ( )

( )1

11
1)(

−

−−

−

−+−
−=

jj

jjj

n
ccn

ZcxYcc
xS  

Remember that, from definition 12.8,  )()()(
1

1

1

1

jn

jj

j

jn

jj

j

n cF
cc

cx
cF

cc

xc
xF

−

−

−

− −

−
+

−

−
= . Using the new 

setup 
n

Y
cF jn =− )( 1  and 

n

ZY
cF jn

+
=)(  . 

• Now the marginal distributions of Y  and Z  are still binomial –  1~ ( ;1 ( ))jY b n S c −−  and 

1~ ( ; ( ) ( ))j jZ b n S c S c− −   – but the joint distribution is a multinomial (trinomial) distribution (Y  and Z  

are not independent). Then 

1( ) (1 ( ))jE Y n S c −= − ; 1 1var( ) (1 ( )) ( )j jY n S c S c− −= − ; 

 1( ) ( ( ) ( ))j jE Z n S c S c−= − ; 1 1var( ) ( ( ) ( ))(1 ( ) ( ))j j j jZ n S c S c S c S c− −= − − + ; 

1 1cov( , ) (1 ( ))( ( ) ( ))j j jY Z n S c S c S c− −= − − −  
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• The Expected value and variance  of the estimator are given by 

( )
( )

( )
( )
( )
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1

1
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−
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n
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• For the density estimate we get 

( )1

)(
−−

=
jj

n
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Z
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Then 

( )
( )

( )
( ) 1

1

1

1

1
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− −

−
=

−

−
=

−
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( )nf x is a biased estimator for )(xf . The variance is 
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Example 14.8 – For data set C estimate )10000(S , )10000(f  and the variance of your estimators. 

Estimates 

51762.0
10000227

2500421000099
1)10000( ≈

×

×+×
−=nS  

5
1085022.1

10000227

42
)(

−×≈
×

=xfn  

Estimates of the variance of the estimators 

82379.55
227

12672

227

99

227

128
227)r(âv ==××=Y  

22907.34
227

7770

227

185

227

42
227)r(âv ==××=Z  

31720.18
227

4158

227

99

227

42
227),v(ôc −=−=××−=ZY  

 

( )

2 2

2 2

12672 7770 4158
10000 2500 2 10000 2500

227 227 227ˆvar ( ) 0.000947127
227 10000

nS x

× + × − × × ×

= ≈
×

 

( )ˆvar ( ) 0.030775nS x ≈  

A 95% confidence interval for )10000(S  is given by (0.45730 ; 0.57794) 

 


